

Institute for Static und Dynamics of Structures

Fuzzy Finite Element Method ______ FFEM

Bernd Möller

Recent research results about non-classical methods in uncertainty modeling

http://www.uncertainty-in-engineering.net

and

Fuzzy Randomness

B. Möller, M. Beer, Springer 2004

Fuzzy Structural Analysis

from fuzzy analysis to fuzzy structural analysis

Fuzzy Structural Analysis

Mapping Model

Institute for Static and Dynamics of Structures

$$\tilde{x} \rightarrow \tilde{z}$$

Computing of fuzzy result values by means of a mapping model

$$z=(z_1;...;z_j;...z_m) = f(x_1;...;x_i;...;x_n)$$

- f(x) represents the mapping model M = structural analysis
- <u>Parameter</u> of the model M might also be <u>uncertain</u>
- The mapping model becomes uncertain

$$\tilde{\mathbf{f}} = \mathbf{M}(\tilde{\mathbf{m}}_1; ...; \tilde{\mathbf{m}}_r; ...; \tilde{\mathbf{m}}_p)$$

Institute for Static and Dynamics of Structures

Vibration analysis of a multistory frame

- masses are concentrated in the horizontal bars
- prescribed initial value for the velocity of the upper horizontal bar

Institute for Static and Dynamics of Structures

four-dimensional fuzzy input space, also depending from the crisp parameter t

six-dimensional fuzzy result space

mapping is not biunique

no monotonicity

Institute for Static and Dynamics of Structures

fuzzy displacement-time dependence of the lowest story

Institute for Static and Dynamics of Structures

Prestressed Reinforced Concrete Frame (prefabricated segments)

Institute for Static and Dynamics of Structures

System modification (during montage) and loading process

- 1. Simultaneous prestressing of all tendons in the horizontal bar without the effects of deadload
- 1. Application of the deadload and hinged connection of the columns and the horizontal bar
- 3. Transformation of the hinged joints at the corners into rigid connections
- 4. Application of additional translation mass at the frame corner
- 5. Introduction of dynamic loading due to the horizontal acceleration

Institute for Static and Dynamics of Structures

Fuzzy Structural Responses (nonlinear analysis)

• horizontal displacement $\tilde{v}_h(t)$ (left-hand frame corner)

• maximum end-fixing moment \widetilde{M}_{b} (right-hand column base)

Reinforced-Concrete Frame - Static

Institute for Static and Dynamics of Structures

3) vertical load $v \cdot P_{V0}$ and $v \cdot p_0$ (increasing of v until system failure)

geometrically and physically nonlinear analysis

Reinforced-Concrete Frame - Analysis (1)

Institute for Static and Dynamics of Structures

Fuzzy arrangement of the reinforcement steel

• Fuzzy distances $\tilde{h_i}$ at each end of the bars and in the middle of horizontal bar:

- deterministic stiffness of the rotational spring $k_{\omega} = 5$ MNm/rad
- loading up to global system failure

Reinforced-Concrete Frame - Analysis (1)

Reinforced-Concrete Frame - Analysis (2)

Institute for Static and Dynamics of Structures

Fuzzy input data:

• Reinforcement arrangement is deterministically !!

Reinforced-Concrete Frame - Analysis (2)

Institute for Static and Dynamics of Structures

Fuzzy resultsFuzzy load-displacement

dependency (left corner, horizontal)

• Fuzzy displacement (failure state)

Institute for Static and Dynamics of Structures

1 Displacement field $\underline{\tilde{v}}(\underline{\theta})$ containing fuzziness is chosen

$$\underline{\tilde{v}}(\underline{\theta}) = \underline{N}(\underline{\theta}) \cdot \underline{\tilde{v}}(e); \quad \underline{\theta} = \{\theta_1, \theta_2\}$$

2. Linear relationship between generalized strains and displacements

$$\underline{\tilde{\varepsilon}}(\underline{\theta}) = \underline{\mathrm{H}}(\underline{\theta}) \cdot \underline{\tilde{\mathrm{v}}}(\mathbf{e})$$

3. Linear material law

$$\underline{\tilde{\sigma}}(\underline{\theta}) = \underline{\tilde{E}}(\underline{\theta}) \cdot \underline{\tilde{\epsilon}}(e) = \underline{\tilde{E}}(\underline{\theta}) \cdot \underline{H}(\underline{\theta}) \cdot \underline{\tilde{v}}(e)$$

Institute for Static and Dynamics of Structures

4. Virtuel displacements, virtual strains

$$\delta \underline{\tilde{v}}(\underline{\theta}) = \underline{N}(\underline{\theta}) \cdot \delta \underline{\tilde{v}}(e)$$
$$\delta \underline{\tilde{\varepsilon}}(\underline{\theta}) = \underline{H}(\underline{\theta}) \cdot \delta \underline{\tilde{v}}(e)$$

5. Virtuel internal fuzzy work

$$\begin{split} \delta \tilde{A}_{i} &= \int_{\tilde{V}} \delta \underline{\tilde{\epsilon}}^{T} \left(\underline{\theta} \right) \bullet \underline{\tilde{\sigma}} \left(\underline{\theta} \right) d \tilde{V} \\ \delta \tilde{A}_{i} &= \delta \underline{\tilde{v}}^{T} \left(e \right) \bullet \int_{\tilde{V}} \underline{H}^{T} \left(\underline{\theta} \right) \bullet \underline{\tilde{E}} \left(\underline{\theta} \right) \bullet \underline{H} \left(\underline{\theta} \right) d \tilde{V} \bullet \underline{\tilde{v}} \left(e \right) \\ \hline \\ \hline \\ Fuzzy \text{ element stiffness matrix } \underline{\tilde{K}} \left(e \right) \end{split}$$

Institute for Static and Dynamics of Structures

6. virtuel external fuzzy work

$$\begin{split} \delta \tilde{A}_{a} &= \delta \underline{\tilde{v}}^{T}(\underline{e}) \bullet \underline{\tilde{F}}(\underline{e}, t) \\ &+ \int_{\tilde{V}} \delta \underline{\tilde{v}}^{T}(\underline{\theta}) \bullet \underline{\tilde{p}}_{M}(\underline{\theta}) d\tilde{V} \\ &+ \int_{O} \delta \underline{\tilde{v}}^{T}(\underline{\theta}) \bullet \underline{\tilde{p}}(\underline{\theta}, t) dA_{O} \\ &+ \int_{\tilde{V}} \delta \underline{\tilde{v}}^{T}(\underline{\theta}) \bullet \tilde{\rho}(\underline{\theta}) \bullet \underline{\tilde{\tilde{v}}}(\underline{\theta}, t) d\tilde{V} \\ &+ \int_{\tilde{V}} \delta \underline{\tilde{v}}^{T}(\underline{\theta}) \bullet \underline{\tilde{\rho}}(\underline{\theta}) \bullet \underline{\tilde{\tilde{v}}}(\underline{\theta}, t) d\tilde{V} \end{split}$$

virtuel work of nodal forces

virtuel work of mass forces

virtuel work of time-dependent surface forces

virtuel work of inertial forces

virtuel work of damping forces

Institute for Static and Dynamics of Structures

Fuzzy differential equation of second order

$$\tilde{\underline{\mathbf{M}}} \bullet \tilde{\underline{\mathbf{\ddot{v}}}} + \tilde{\underline{\mathbf{D}}} \bullet \tilde{\underline{\mathbf{\dot{v}}}} + \tilde{\underline{\mathbf{K}}} \bullet \tilde{\underline{\mathbf{v}}} = \tilde{\underline{\mathbf{F}}}$$

in the static case:

$$\underline{\tilde{\mathbf{K}}} \bullet \underline{\tilde{\mathbf{v}}} = \underline{\tilde{\mathbf{F}}}$$

Solution technique for time-independent problems

Institute for Static and Dynamics of Structures

given: $\underline{\tilde{P}}_{j}(\underline{\theta}, \underline{\tilde{s}}_{j})$ $j = 1, ..., n_{FF}$ fuzzy – functions $\underline{\tilde{s}}_{j} = \{\tilde{s}_{j,1}, \tilde{s}_{j,2}, ..., \tilde{s}_{j,r}\}$ fuzzy bunch parameter vectors
with $\tilde{s}_{j,r}$ fuzzy bunch parameters

•
$$\underline{\tilde{\mathbf{v}}} = \underline{\mathbf{K}}^{-1} \left(..., \, \tilde{\mathbf{s}}_{j,r}, ... \right) \bullet \underline{\mathbf{F}} \left(..., \, \tilde{\mathbf{s}}_{j,r}, ... \right)$$

all fuzzy bunch parameters possess the same of α-levels

• each trajectory describes one displacement field $\underline{\mathbf{v}}(\underline{\theta}) = \mathbf{f}(..., \tilde{\mathbf{s}}_{j,r}, ...)$

 computing the membership functions of the fuzzy result values with α-level optimization

Bunch Parameter Representation of Fuzzy Functions

Solution technique for time-independent problems

Institute for Static and Dynamics of Structures

Generation of uncertain input spaces (bunch parameter $\tilde{s}_{1,1}, \tilde{s}_{1,2}, \tilde{s}_{1,3}$) $\mu(s_{1,1})$ $\mu(s_{1,2})$ $\mu(s_{1,2})$ $\mu(s_{1,3})$ $\mu(s_{1,3})$ $\mu(s_{1,3})$

Solution technique for time-independent problems

Example: geometry and finite element model

FFEM-analysis (1)

Institute for Static and Dynamics of Structures

fuzzy input values

FFEM-analysis (1)

FFEM-analysis (1)

FFEM-analysis (2)

Institute for Static and Dynamics of Structures

both: stationary fuzzy fields

FFEM-analysis (2)

 $\boldsymbol{\nu} \dots$ load factor

Thank you !